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Stability of an aerostatic bearing with an elastk skirt used for transporting 
objects ~1 the shop floor is considered. Equattons of the Timcuheako - 
Kaman theory of equilibrium of an annular diaphragm are used together with 
the equations describing the variation in the mass of air in an tnflatable cavity 
when the pressure and density are connected by au adiabatic relatmnship. As 
a result, approximate equations describing the pressure change in the inflat - 
able cavity and in the air cushtou are derived, as weJl as the uonlinear equat- 
ions describing the variation in the bearing platform rise height with time and 
the distancea, from the symmetry axis, of the smallest gap between the dia- 
phragm and the fixed plane. Pa&rig to the variational equations yields the 
character&tic equatica and the Hun&z criterion of stability of the bearing. 
The latter crit&ar fs verified for a specified range of values of the bearing 
parameters, A satisfactory agreement of the theoretical graphe of the neutral 
stability curve and the period of I osdllatioar; of the bea&ng wfth the data 
obtained on a special wtal stand and during the practical use of the 
bearing is noted, 

C-in plants use the aerostatic bearings on an air cushion with an elastic skirt, 
for transportmg objects along the shop floor. The constmction and working principles 
of an aerostatic bearing are descdbed in P-33. The form of the diaphragm for a 
steady-state mode and the characteristic features of the tlow in a narrow layer in which 
a sharp presmre change occurs, were given a theoretical and experimental treatment 
in [Il. The practical usage of the aerostetic bear%ngs shows, together with specially 
devised experiments, that under certain conditions increase in the flow of air or reduo 
tion in the weight of the load transported induces vertical oscillations in the aerostat- 
ic bearing, and in some oases the amplitude of these oscillations incruu* with time, 
Oscillations of a device on an afr cushion with a rigid bamdary were studied in [4] 
for the case when the air consumption was large. Analysis of the relattom connectmg 
the volume of air under the &me with its consumption and density, gave a rheological 
equation for the air cushion and supplied a satisfactory amwer to the problem of dynam- 
ic stability of ships supported by air cush@s. So far, no theory of stability of aero- 
static beadngs with elastic skirt has been constructed. The known contributions are 
llmited to certain technfeal recommendations for reducing the ampMtude of the oscill- 
ations (by means of elastic dampers ES] or by usfng additional uolmnes of air ES. 53. 
In [5] the study of stabiWy of aerostatfc bear@s included the experimental relation- 
shfps cormecting the height at which the platform floats and the height at which the 
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damper is situated with the air pressure within the c~r~~d~g objects. 

1. Differential equation describing the vertical motion of the platform of the 
aerostatic bearing shown in Fig. &has the form 

Here H denotes the height at which the platform floats, the height changing with 
time, P is the resultant of the dynamic pressures distributed at the lower side of the 
diaphragm 

IU&-$Qrdr (1.3 
0 

P is the pasure in the air cushion and pa is th8 atmosph&c preuure. 
To find how p varies with time, we mu& conetruct the differ&W eq~ttons des- 

cribing the variation in the shape of an anWar diaphragm, taking intoacc~t the 
large ~~~0~ in a&mlance with the 
Timo&enko -Karmari theory and the 
relations of Hooke’t Law. When the 
bendtag mom&a, the outer tWgentia1 
forccc and the inertial forces of the flex- 

ible diaphragm i&elf are a8 @@-eded, 
then the differenttai equationt assume the 
form 

Fig. 1 

a (idN,) I 6%. - rw, -tN,)=O 

ra (N, + NJ f ar + “hE&(dw / dr)a = 0 

r-V (rN,aw / dr) / 69 = --Q 

where N, and Nt ddnote the r&al and tang&&l ter~W&, w is the axial d&We- 

me% 4==pa-p, and pz tt the presntre wi&ia the itdW&-e cavfty. ‘l%e radial 
displacement 24 is written, in accordance with Hooke’c Law, in the furm 

u = (E6)-‘r (N, - vN,) 

Here E io the Young’s modulus ofthe diaphragm, 6 isits thiekn= and ‘v is 
Poisson’s ratfo. The condition of rigid ClrrrQitlg of the diaphragm a* l&e Cimies 

rmtaand r=b ( yic?;lds tb8 f&,&Wing boundary CondBiW 

r = a, ,w = 0, u = 0; r = b, w = 0, u = 0 (1.4) 
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Let us assume the air enters the region of the air cushion only through the side open- 
ings in the diaphragm itself. Let the total area of the side openings be s, . The 
air passes into the inflatable cavity through the openings, the area of which is S, , 
from a special chamber in which the pressure is assumed to be ps and the densitypa, 
neither varying with time. We denote by V, the volume of the inflatable cavity 
bounded from abwe by a rigid disc, and from below by the surface of the diaphragm. 
The volume of the air cushion extending from the symmetry axis to the circumference 
of radius r. (the cross sections with a smallest gap ho 1 is denoted by V,. The 
equations describing the changes in the mass of air within the volumes V, and V, 
have the form 

d (pzv,) 1 dt = (‘3 - Q3, d (PI~I) / dt = 92 - Q1 (1.5) 

where Q, and Qa denote the rates of flow of air through the openings & and s3 1 
respectively, and Q1 is the rate of flow of air through the crossection with the smallest 
gap the area of which is s, = Bnr,lt,. The rate, of flow can be related in an 
approximate manner to the corresponding pressures using the Bernoulli integral, and 
this yields the relations 

Or" - 2~ (Y - i)-lp*plS,qp*-l 1 p&a/v - (pi+ / p#v+“q ( 1.6) 

i=2,3 

When an adiabatic relation exists between the pressures and the density, we have 

Pi f Pf-1 = (Pi 1 PI-l)Y (1.7) 

The problem of vertical motion of an aerostatic bearing is thus reduced to simultaneous 
solution of the differential equations (1.1) - ( 1.3). ( 1.5) and the finite relations (1.6) 
and (1.7). Averaging the pressures and densities over the volumes, we can accept the 
assumption of piece-wise constant dfatribution of the pressure p within the air cushion, 
described by the relations 

(1.8) 

2. Let us establish the relations connecting the pressures p, and p1 with the 
quantities H and r. , the latter varying with time. Integrating the first two equat- 
ions of (1.3) from r = ato r andfrom r.to r = b ’ and using the conditions (1.4). 
we arrive at the following exprasions for the temfon N, and displacement u : 

a<r<ro, 4r2N, = 2N, [(l + Y)F +(I - vja’;-- jX(r, rl)dr, 
a * 

4Ebu = 2N, (1 - Y”) (1 - $) - i Y (r, rl) drl 
a 
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value of the tension in the form 

h 

N (ba -4)(1 -Y2)== Eb[s (g)” rdr+i (gpr] (2.3) 

la r0 

Equations (2.2) can be integrated after performing the substitutior~ shown above, using 
the condttioas (1.4). Asuming the axial displacement at r = t,, to be approxim- 
ately equal to the platform rise height H , we obtain 

4NH=(p* -P& = (Pt -Poh (2.4) 
f = r0* h (rea I a*) - res + 49, q = ro* h (res I b*) - rea + tt’ 

From (2.2) and (2.4) we find 

r < ro, aw / ar = 2H (roa - ?) / (rl;) (2.5) 
r > ro, c3ro / & = 2H (ro* - i”) I (rq) 

while (2.3) and (2.5) together yield 

JN=Bnrlcp (2.6) 
cp 3: 4E& (1 - #)-l(ba - u*)-112roa (qusl - q (rba - us)(qDo* + 

(P - ro2)q-s - 2ro%-*l 

In this manuer we obtain the following expregioa fkom (2.4) and (2.6) for the prepure 
differ-cc: 

3. Next we derive the differ&la1 equation for the time-dependent parameters 
H and r, of the aeroatatfc bearing. For the volume of the inflatable cavity 

we use (2.5) to obtain 

vz = 2n (9 - tP)Ex. 
4% (P - a%) = (P - ro’)f/q - (ro” - US)” / 6 

Using (3. I) and (1.7). we write (1.5) in the form 

A&E / dt -t A,dr,,Jdt - Q8 - Qs 

(3.1) 

(3.21 
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A 1 = 3 (PeVJ / 6% = P3VdP2 / ps)“vH-“I1 + 3 012 - pa) 1 (VP*)1 
Aa = a (PzV*) / %l = p&@, / p*)w(ypJ-‘ap, / dr, + 3 In Fig/ &,I 

P¶ = Ps (PO 1 P$)l’v 

Let us assume that the flow of air tbmgh all the openings is subcriticai everywime. 
Then, for y = T/S we have the following inequalities: 

pz > 0.528p,, pi > 0.528p,, pa > 0.528~1 (3.3) 

This yields the two-sided inequality for the pressure within the inflatable cavity 

3.6~, 3 ~2 > 0.5%~~ 

Assuming now that the pressure in the inflatable cavity is nearly equal to the pressure 
PI within the air cushion, we put i = 2 in (1.6) and expand the terms in powers 

of the pressure differences retaining the ffnt order terms in @s - &) / pt. Taking 
into account (2.7), we obtain 

QBa = 2p*W@2 - Pd = 2pzh2 @I - P&t (3.4) 

ReIatfous (1. l), (1.2), (1.6), (2.7). (3.2) and (3.4). yield the following system of 
two nonltnear dffferential equatioas: 

dZH I dt2 = ngG-we, (1 - $)r,2 - g (3.5) 
A,dH i dt + A&@ I dt = Ss12y / (y - I)~&s~“’ t@,, 1 P#” - 

@* I P,)(~+l)‘v~ - s, [2&I @z - pa) 9 Wpa)l’V 

where the pressure ps appearing in the second equation can be eliminated by using 
the first equation of (2.7). 

4. In the steady-state, (3.4) and (2.7) together yield 

n~*s9*(i _ q*)rs*s z G, Qs* = Qs*, pr* - pa = (p2* - (4.1) 

PN - **) 

where the asterisk denotes the values of the variablea in the steady-state mode. When 

tbe weight G , the preasure ps, the areas Ss and SI and tire radii a and b 
of the diaphragm ctrn@g are all given, (4.1) and (2.7) yield the valuer on H, TO, 

PI and p2. To find the narroweat gap ha which deiermins the maximum roughness 
of the floor over which the aerostatic bearing can travef, we shall use a formula given 
in [I] which takes into account the viscosity of the air. 
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We investigate the stability of the stanzas performance of the aerostatic bearing, 
introducing the variations of the variables and assuming that 

H = H* 4 611, r. = ro* + ho, p1 = PI* + 6p, (4.2) 

PZ = Pz* + ~PW PS = PS* + 6~3, 
QB = Qs* i- SQ, 

9% = Qz” f SQz, 

Here 6~3 is assumed given and independent of time, Fmm now on, we shall omit 
the asterisks referring to the stationary mode. From (I.. 6), (2.7) and (3.4) we obtain 

6Qs j 8Ps = -Q&P&If (4.3) 

f = fz-yy + l&J* I p&Y-l)/‘l” - 13 I t1 - ~~/p~~~y-l?~l 
aQs / a~, = Q&-l [(pe -pa)-' + (yp,)-'I 
aQz 1 a~, = -Q&W-32 - PJ-’ 
ap, I aH = 3H-‘(p, - pa), ap, I i?H = 3H-’ (pz - p,)(l - +) 
ap, I ar, = (pp - po)d In q&k, 
ap, / aro = @2 -Pm -JZwn Irp (1 --$)I I ar, 

Substituting (4.2) and (4.3) into (3.4) and neglecting the products of variations and 
their time derivatives, we obtain 

~(~~jdt? + B$H + BJro = 0 (4.4) 

A,d(GH) f dt + Azd (6ro) I dt + A,8H + A,6ro = A,&p, 
B, = -3gH-“, B, = -2g/ro - ga[ln q (1 - *)I / ar, 
A II = 3Q,GW'W' + P + l), P = tpz -pa)/ ypt 
~~=Q~f(2~~+P+l)dIncp/dr,+~In~/~r~l 
2A, = Q&y + ~XYP,)-’ + ‘yps ,’ f II - (~2 / ps)‘t”“‘pl) 

and we adopt t = 0, 6H = 0, d&H / dt = 0 and 6r,, = 0 as the initial 
conditions for (4.4). ‘I%en the time-dependence of 6H will be given in the form 

8H = A,@, (A8Ba - AJ3$l x 

II 
k=8 

Bh + A-l kxl &k+% - hk+d (B, - &bc+&k+,eY)] 

1 i-1 

A= ?q= hzs hs2 , %a = $, hs = hs 

,&I 12 kt 

The indices & are roots of the characteristic equation 

AsAs + A&” + (A$, - A,&) L + (J&B, - A,B,) = 0 



954 N. R Slbgatullla, N.A. Slakla and E. A. Sorekln 

The Hurwitz -Rod conditioaa which are aeceasary for the real parts of ii& to be 
negative, are given by the Sammy 

If the statiomry mode of the aerostatic bearing ia perturbed not by ehangin~ the press- 
ure &ps but irn~kiv~y, then the taiual ALMS will become 

t = 0,8H = 0, sro = 0, d&H / dt = V@ 

and the deviation 8H will change with time accosding to the relation 

Using (4.4), we can eatabltsh that when the last ine@Wy of (4.5) holds, then the 
preced&g two ~~~ will strktly hold. In that case the last ~~~ can be 
converted into an equality repluonting the equation of the neutral curve separating 
the xe@ons of stability aad ~~~ of the aerostatic beariq 

(1+3P)l(2fP+P+ 1) ==d(lnfWp)/d(ln~) (4.6) 

If the flow of afr from the chamber into the inflatabie cavity is ntpcrcttticti wkiie 
the big flows are subcritical, then the first ~~~ of (3.3) m&k& be inverted. 
In this case the rate of fYiow Qa will be indeperxient of the pressurea~in the idWsb@ 
cavity and we obtain the following otpeessio~‘& 

wltile the equation of the neutral curve will assume the form 

(4.7) 

To obtain the approximate valuea of the functions of r, appearing in (4.6) and (4.71, 
we introdixe a small parameter of the form 

s = (ba - rag) I bg 

ad expand the functiosrrr gr, 9 ad X ad their dncEvativ_ with WpEct to roP 
in powers of #is parameter. Then we have 

cp - 32&6 131 (1 - v’) (ba - a”)l-l (6~~ - l,e-a + t&-‘) (4.8) 

up = as (1 + Isa), 2 = b3 (4 (b* - u~)I-~ (I, - t,e) 
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d In (fhp) / d In $ = “Is (1 - e I# / IL, (b* - a’) I - e 1,/6) 

1 = b” In (b” / a’) - b3 + 8, lo = 2 - (bS - ay / (WJ 

4 = a/* + [(b’ - a’) / z1* ln (b%‘) - 2 (b2 - US) / 1 
1, - “1, + “18 i2b’ f 1 - (b’ - ug)l I PI, Is = =las + ‘I, [2b’ / l- 

(b’ - uy / 191 

Using the first equation of (4.2), we can write the parameter c in tie form 

+z = 1 -G[@, - pa) (1 - $)l-’ ! (ribs) 

Taking into account the second equation of (4.8). we can neglect the tubtrahent 

and replacing i - E by (1 + e)-l, we obtafn 
parameter e : 

the following expresion for the 

Whentheratio b/a isvadedfrom3.5to7, thevalueofthefactorof e in the 
last expnrdon of (4.8) varies from 0.65 to 0.85. In what follows, we shall assume 
the above value to be equal to 0.75~ where I( = ba / (ba - a’). Solving the 
equation (4.6) for f and Introducing the notation 

we can write the equaUon (4.6) of the neutral curve in the following approximate form: 

f (z) = 1 + IL5cqk (zy - 1) - 0.5 - 1.5 p] [I + 7xy / (15 (q--l))1 

Wheu the condiUom of stability are satisfied, we obtain the following expression for 
the pedod of osdllationa of the aeraatatic bearing: 

T (g I H)“f = 2n IV, (xy - 1) / (zg)l’h x 
(1 - 0.5j.b [a (q - 1) - 11 [1 + 7xg / (15 (xy - i))l x 
1% (xi/ - 1) / (ay) - 0.261) 
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Fig. 2 Fig. 3 

5. The results obtained were checked experimentally using a special stand, and 
full scale devices in the industrial environment. In particular, use was made of high 
speed moving film mnning at 160 frames/set. One of the frames showing the shape of 
the diaphragm at two instants of time half a period of the bearing oscillation apart, is 
shown in Fig. 2. 

The a-tic bearing isda@ctedschematically in Fig. L Air is fed from a comp- 
ressor into the chamber 3, pas&g from there through the nozzles 4 into an &fi&&le 
diaphragm cavity 2 and then through the openings 5 into atmosphere through a narrow 
gap. The bearing cscillated with a frequency varying from 7 to 15 Hz, and the ampli- 
tude of the platform height H reached 20 mm. 

The limit of stability of the aeratatic 

PJ IPll 

Fig. 4 

bearing and its period of osciU@ions were 
detrsnnincd by varying the load per bearing 
from 40 to 600 kg. Measurements were 
taken of the pressure Ps in the chamber, 

P, in the skirt, PI in the air cushiou zone 
and of the period of the bearing oscillations. 
The supercritical and subcritical flows of gas 
through the nozzles 4 were rtudied, with the 
area Sa varied from 1 to 5 mm. Fig. 3 
and 4 depict the results of the theoretical 
computations (solid linsr1 and earperimrrntal 
data for thelimitaofvaria&onof a and 
of the ratio b/a shown in Sect. 4 (1-c = 
2.74; 2 _ a = 4.4; 3 - & = 8.2; 4 - o - 

22.2). We found that within the stated 
limits of variation in the values of e and 

bjo , the agreement between the theoret- 
ical and experimental results was satisfactory. 

The authors thank E. I. Sveshnikov for helping with the nUmmiCa1 computations. 
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