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Stability of an aerostatic bearing with an elastic skirt used for transporting
objects on the shop floor is considered, Equations of the Timoshenko —
Karman theory of equilibrium of an anmular diaphragm are used together with
the equations describing the variation in the mass of air in an inflatable cavity
when the pressure and density are connected by an adiabatic relationship. As
a result, approximate equations describing the pressure change in the inflat-
able cavity and in the air cushion are derived, as well as the nonlinear equat-
ions describing the varfation in the bearing platform rise height with time and
the distances, from the symmetry axis, of the smallest gap between the dia-
phragm and the fixed plane, Passing to the variational equations yields the
characteristic equation and the Hurwitz criterion of stability of the bearing.
The latter criterion is verified for a specified range of values of the bearing
parameters, A satisfactory agreement of the theoretical graphs of the neutral
stability curve and the period of :oscillations: of the bearing with the data
obtained on a special experimental stand and during the practical use of the
bearing is noted,

Certain plants use the aerostatic bearings on an afr cushion with an elastic skirt,
for transporting objects along the shop floor, The constmuction and working principles
of an aerostatic bearing are described in [1—-3]. The form of the diaphragm for a
steady-state mode and the characteristic features of the flow in a narrow layer in which
a sharp pressure change occum, were given a theoretical and experimental treatment
in {11, The practical usage of the aerostatic bearings shows, together with specially
devised experiments, that under certain conditions increase in the flow of air or reduc-
tion in the weight of the load transported induces vertical oscillations in the aerostat-
ic bearing, and in some cases the amplitude of these oscillations increases with time,
Oscillations of a device on an air cushion with a rigid boundary were studied in [4]
for the case when the air consumption was large. Analysis of the relations connecting
the volume of air under the dome with its consumption and density, gave a rheological
equation for the air cushion and supplied a satisfactory answer to the problem of dynam-
ic stability of ships supported by air cushions, So far, no theory of stability of aero-
static bearings with elastic skirt has been constructed, The known contributions are
limited to certain technical recommendations for reducing the amplitude of the oscill-
ations (by means of elastic dampers [5] or by using additional volumes of air {3, 5].
In [5] the study of stability of aerostatic bearings included the experimental relation-
ships connecting the heightat which the platform floats and the height at which the
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damper is situated with the air pressure within the corresponding objects.

1. Differential equation describing the vertical motion of the platform of the
aerostatic bearing shown in Fig,. l4has the form

Gg'\d*H /di2 = P — G (1.1

Here H denotes the height at which the platform floats, the height changing with
time, P is the resultant of the dynamic pressures distributed at the lower side of the
diaphragm

b
P=2::5.(p-—-pa)rdr (.2
4]

D is the pressure in the air cushion and p, is the atmospheric pressure.

To find how p varies with time, we must construct the differential equations des-
cribing the variation in the shape of an annular diaphragm, taking intoaccount the

large deflections in accordance with the

J ‘3 ¢ Timoshenko —Karman theory and the
re lations of Hooke's Law, When the
bending moments, the outer tangential
forces and the inertial forces of the flex-
ible diaphragm itself are all neglected,
then the differential equations assume the
form

Fig.1

d(N,)/dr—r (N, +N) =0 (1.3)
ré (N, + N/ ar + :E8(ow / ar)* = 0
r-19 (rN,ow/ or) | or = —q

where N, and N, denote the radial and tangential tensions, w is the axial displace-
ment, g == p, — p, and p, is the pressure within the inflatable cavity. The radial
displacement u is written, in accordance with Hooke's Law, in the form

u = (E8)~'r (N; — vN;)

Here E is the Young's modulus of the diaphragm, § is its thicknessand v is
Poisson's ratio. The condition of rigid clamping of the diaphragm along the circles
r==a and r = b , yields the following boundary conditions:

r=a‘,,wx0,u=0;rsb,w=0,u=0 (1.4)



Stability of an aerostatic bearing 949

Let us assume the air enters the region of the air cushion only through the side open-
ings in the diaphragm itself. Let the total area of the side openings be S, . The
air passes into the inflatable cavity through the openings, the area of which is S;
from a special chamber in which the pressure is assumed to be ps and the densityQs,
neither varying with time, We denote by V, the volume of the inflatable cavity
bounded from above by a rigid disc, and from below by the surface of the diaphragm,
The volume of the air cushion extending from the symmetry axis to the circumference
of radius ry (the cross sections with a smallest gap h,, ) is denoted by V,, The
equations describing the changes in the mass of air within the volumes V, and V,
have the form

d(pVy)/dt = Qs —Qy, dip,Vy)/dt =0Qy, —Q (1.5)

where (), and Q, denote the rates of flow of air through the openings §, and S;;
respectively, and Q, is the rate of flow of air through the crossection with the smallest
gap the area of which is S, = 2nrgh,. The rates of flow can be related in an
approximate manner to the corresponding pressures using the Bernoulli integral, and
this yields the relations

Q2 = 2y (v — 1) pip1S*l(piey / P1)*Y — (ps—y / py)¥rIY] (1.6)
i=2,3

When an adiabatic relation exists between the pressures and the density, we have
Pil Py = (py ] pyy)? (L7

The problem of vertical motion of an aerostatic bearing is thus reduced to simultaneous
solution of the differential equations (1. 1) —(1.3), (1.5) and the finite relations (1. 6)
and (1.7), Averaging the pressures and densities over the volumes, we can accept the
assumption of piece-wise constant distribution of the pressure p within the air cushion,
described by the relations

0<"<"o, P=pl; r0<r<bv p=pa (1'8)

2. Let us establish the relations connecting the pressures p, and p, with the
quantities H and 1y, the latter varying with time. Integrating the fimst two equat~
ions of (1.3) from r = ato r and from r.to r = b’ and using the conditions (1.4),
we arrive at the following expressions for the tensiont N, and displacement y ;

a<r<re, N, =2N,[(1 + V)P + (1 — @] — | X(r, r)dr,

-

4Bbru = 2N, (1 — ) 1—— SY(r,rl)drl
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4
rr<h, &N, =N (1 +9)r* + (1~ 28 + [ X, rdn

b
4Btru = 2Ny (1 — ) (1= 1) +\ ¥ ¢, r ar,

X (r, ry) = E8 (8w / dr)¥r* — rn,t
Y(r, ry) = ES (Bw/ rM2 — (1 + 9){1 — n¥rYin-t

Using now the requirement that the radial tension N, and radial displacement u
be both continuous and pasing through the value r = ry at which the pressure under-
goes, in accordance with the assumption (1,8), a jump, we obtain the following express-
ions for the tensions N, and N, :

2N, (b* — o%) (Ed)* = & () [+ =]+ @
b

\ G [+ o=

2N, (b* — a*) (E8) ™" = S ) [T + =+

{ ) [+ )

Te

The assumption (1.8) implies that the right hand side of the third equation of (1.3) will
be constant, Integrating this equation from 7 to 7y and from ry to T and using
the condition that (Pw/dr) =0 when r = r,, we obtain

(No)rendw [ Or = (pg — p1Xre* — r%) / (2r) 2.2
(Np)rsndw [ 8r = (pg — pa)(ry® — %) / (2r)

Equations (2. 1) and (2,2) yield two nonlinear integral equations for determining
dw/8r ontheintervalsfrom r=a to r=r, andfrom r=r, to
r=b. An approximate expression for determining 0w / Or is obtained by re-
placing the variable multipliem in the left hand sides of (2. 2) by a single constant
multiplier of intermediate value falling between N, and JV,. This value is obtain-
ed by replacing the integrand expressiots within the square brackets in (2. 1), by 2r2/
(1 — v%),  the latter satisfying the inequality

@/ +v+r/—vI<2r/ (1 -/ + )+t (1 — vl

Computing N, and Ny from (2. 1) with and without change in the multiplies
shows little difference in the results, and we can therefore obtain the intermediate
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value of the tension in the form

N(b*—a?)(1 —v2) = Eb [g (%‘;’.)" rdr+ § (%‘;;)“ r d,] (2.8)

To

Equations (2, 2) can be integrated after performing the substitution shown above, using
the conditions (1.4). Assuming the axial displacement at r = r; to be approxim-
ately equal to the platform rise height H , we obtain

4NH = (py — py)L = (Py — P (2.4)
E=rln(r®/a®) —r® +a® n=rln(r?/ 5% —r+ b

From (2. 2) and (2, 4) we find
r<ry, Ow/or=2H(ry® —r¥)/(r}) (2.9)
r>ry 0w/ or=2H (r — %) / ()

while (2. 3) and (2, 5) together yield

4N = H'no (2.6)
9 = 4E8 (1 — v9)Y(B* — a2 (D) — 1 (re® — &*)(mD)™* +
(b’ — roz)ﬂ-s -— 2?'02"-31

In this manner we obtain the following expression from (2. 4) and (2, 6) for the pressure
difference:

Py — Ps = H’¢, py — po = H (1 — ), b = 0/t (2.7

3. Next we derive the differential equation for the time-dependent parameters
H and r, of the aerostatic bearing. For the volume of the inflatable cavity

Ve= %fwrdr
a

we use (2. 5) to obtain

dy (B —a®) = (B® —r®Ym — (r* —a*)?/
Using (3, 1) and (1. 7), we write (1,5) in the form
A, dH | dt 4+ Aqdro/dt = Qy — Qs (3.2)
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Ay = 0 (paVa) / OH = p3Vo(py / ps)"H-M1 + 3 (py — pa) / (vP2)}
Ay = 0 (pV3) / 0rg = paVa(pa / Po)W¥[(vpy)~20p, [ Ory + 0 1ln V, / 01yl
Pa = ps (P / Pa)?

Let us assume that the flow of air through all the openings is subcritical everywhere.
Then, for y = 7/, we have the following inequalities:

Pz > 0.528p,, p, > 0.528p,, p, > 0.528p, (3.3)

This yields the two-sided inequality for the pressure within the inflatable cavity

3.6p, > p; > 0.528p,

Assuming now that the pressure in the inflatable cavity is nearly equal to the pressure

Py within the air cushion, we put { == 2 in (1.6) and expand the terms in powers
of the pressure differences retaining the first order terms in (g — p,;) / p,. Taking
into account (2. 7), we obtain

Q% = 20,5:*(Ps — P1) = 205, (P2 — PaV {3,4)

Relations (1.1), (1.2), (1.6), (2.7), (3.2) and (3.4), yield the following system of
two nonlinear differential equations:

@H | dit = ngG-"H% (1 — Y)re® — g .5
AGH [ dt + Agdry | dt = S5i2y / (3 — Dpspal’s [(py [ palt/? —
(Pg | po)0I¥]*r — 83 [2p, (P2 — Pa) $ (Pa/Pa)/V]Ve

where the pressure p, appearing in the second equation can be eliminated by using
the first equation of (2.7).

4. In the steady-state, (3.4) and (2. 7) together yield

ﬂH*SCP*(i -—'llJ*)ro“ = G’ Qa* = Qs*v pl* — Pa = (Pz* - (4.1
pa.)(1 - \P*)

where the asterisk denotes the values of the variables in the steady-state mode. When

the weight G , the pressure pj, the areas S, and Sy and the radii ¢ and b

of the diaphragm clamping are all given, (4.1) and (2.7) yield the values on H, 1y,
P and p,. To find the narrowest gap h, which determins the maximum roughness

of the floor over which the aerostatic bearing can travel, we shall use a formula given

in [1] which takes into account the viscosity of the air.
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We investigate the stability of the stationary performance of the aerostatic bearing,
introducing the variations of the variables and assuming that

H = H* 4+ 8H, ry=ry*+ bry, py =p,* + 8p, (4.2)
Pz = po* + 8py, p3 = ps* + bp;, Q, = Q,* + 8Q,,
Qa = @s* + 503

Here Ops is assumed given and independent of time, Fiom now on, we shall omit
the asterisks referring to the stationary mode, From (1.6), (2.7) and (3. 4) we obtain

0Qs / 9pg = —Qs(ypy)~'f (4.3)
f= 12y + 1)(py / ps)¥-V/* — 1]/ 4 — (py/ps)+-111]

0Q; / 0py = Qy271 [(py — pa)~* + (vPo)~Y]

0Q; / 0py = —Qy27Y(py — py)™?

Ops / 6H = 3H"Y(py — po), Op,/ 0H = 3H™! (py — pa)(1 — V)

dpg / 8ry = (py — pa)@ In @/dr,

Opy [ 0rg = (pg — pa)(1 —P)d Inle (1 ~ )]/ dry

Substituting (4. 2) and (4. 3) into (3.4) and neglecting the products of variations and
their time derivatives, we obtain

Q8H)/dt* + BySH + Bbdry =0

Ad(BH) | dt + Aqd (Bry) / dt + ARSH + A,6r, = ASps
By = —3gH-', B, = —2g/r, — gdlln o (1 — )] / or,
As = 3QsH)Y2fP + P + 1), P = (p, — pa)/ vps
24, = Q4l@fP + P+ 1)dln ¢/ dro + d1n v / or,)

245 = Qs{(y + 1)(vps)™* + vps / f 11 — (py / pg)P¥]}

{4.4)

and weadopt t =0, 8H =0, d6H /dt =0 and 8rp = 0O as the initial
conditions for (4,4). Then the time-dependence of §H will be given in the form

OH = Agdps(AsBy — A By)* X

k=38

B+ 87 3, (bra — o) (Bs — Bibashasse™®)]
1 1 1
A= A2 Ag? As?l, 7"4“;3»1: }ﬁs—“-‘-kz
A Ay Ag

The indices A; are roots of the characteristic equation

AN+ AM* + (4.8 — A1B) A+ (A By — A,B,) =0
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The Hurwitz —Routh conditions which are necessary for the real parts of Ay to be
negative, are given by the inequalities

(Aa.Bs - Ach) > 0, (AaBa - AI.B&) > 0, (4.5)
— B4, ~A4,4,) >0

If the stationary mode of the aerostatic bearing is perturbed not by changing the press-
ure §p, but impulsively, then the initial conditions will become

t=0,6H =0, 6rp =0, dH / dt = V,

and the deviation 8X will change with time according to the relation
k=3

3H = VAT ;Z (Akss — Akea) 0XP Mt
=1

Using (4.4), we can establish that when the last inequality of (4. 5) holds, then the
preceding two inequalities will strictly hold. In that case the last inequality can be
converted into an equality representing the equation of the neutral curve separating
the regions of stability and instability of the aercstatic bearing

A+3P)/ QP+ P+ 1)y=d(ny/¢)/d(Iny) (4.86)
If the flow of air from the chamber into the inflatabie cavity is supercritical while
the remaining flows are subcritical, then the first inequality of (3. 3) must be inverted.
In this case the rate of flow Q, will be independent of the pressures.in the inflatable
cavity and we obtain the following expression:
Qs* = 72/ (v + DIWD/G-Upyp,Sy?

while the equation of the neutral curve will assume the form

Polnle/ (3¢ ory+dlnle/ (ylar, =0 (4.7)

To obtain the approximate values of the functions of r, appearing in (4. 6) and (4.7),
we introduce a small parameter of the form

e = (b —r¥) [ b

and expand the functions @, and X and their derivatives with respect to Ty,
in powers of this parameter. Then we have

@ = 32E6 (31 (1 — v%) (8% — @)1 (6= — Lye? + Lpel) (4.8
=g (14 Le), x=>0M4( —a)l (lo —Le)
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dln (x%@)/dlny =3/, {1 —eLb*/[l, (B* —a?) ] — & L,/6}
I=0"ln(b*/a") — B3+ a3, Iy =2 — (b® — a®)?/ (IbY)
L=%+1b*—a/1*ln (b%a%) —2 (b* —a®) /!

Iy =3/ + 3 [263/1 — (b® — a®)?/ B, Iy = 5/g5 + Y4 [203 / 1—
® — a2t/ P

Using the first equation of (4.2), we can write the parameter ¢ in the form
e=1—Gl(p, —p) (1 =PIt/ (=d?)

Taking into account the second equation of (4.8), we can neglect the subtrahent
P, Putting

a = abdp,/G

and replacing 1 — & by (1 4 e)-1, we obtain the following expression for the
parameter & :

€=a (py/ps —1) —1

When the ratio b/ g is varied from 3.5 to 7, the value of the factor of & in the
last expression of (4. 8) varies from O, 65 to O, 85. In what follows, we shall assume
the above value to be equal to O.75u where p = b3/ (b® — 43). Solving the
equation (4.6) for f and introducing the notation

Pl ps =3, pslp, =¥
we can write the equation (4, 6) of the neutral curve in the following approximate form:

f@ =1+ M5ap (zy —1) — 0.5 — 1.5pl [1 + Tzy / (15 (zy—1))]

When the conditions of stabflity are satisfied, we obtain the following expression for
the period of oscillations of the aerostatic bearing:

T (g/ H)» = 2n [8/, (zy — 1) / (zy)I'h X
{1 —0.5pla(zy —1) — 114 + T2y / (15 (zy — D) ¥
5/, (xzy — 1)/ (zy) — 0.26}}
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5. The results obtained were checked experimentally using a special stand, and
full scale devices in the industrial environment. In particular, use was made of high
speed moving film running at 160 frames/sec. One of the frames showing the shape of
the diaphragm at two instants of time half a period of the bearing oscillation apart, is
shown in Fig. 2,

The aerostatic bearing is depicted schematically in Fig.1. Air is fed from a comp-
ressor into the chamber 3, passing from there through the nozzles 4 into an inflatable
diaphragm cavity 2 and then through the openings 5 into atmosphere through a narrow
gap. The bearing oscillated with a frequency varying from 7 to 15 Hz, and the ampli-
tude of the platform height H# reached 20 mm,

The limit of stability of the aerostatic
bearing and its period of cscillations were
P31Pa determined by varying the load per bearing
from 40 to 600 kg, Measurements were
o taken of the pressure Pz in the chamber,

P, in the gkirt, P; in the air cushion zone
Ja
Y§

O

and of the period of the bearing oscillations.
The supercritical and subcritical flows of gas
through the nozzles 4 were studied, with the
area §; varied froml to 5 mm. Fig.3

{

20 and 4 depict the results of the theoretical
o / a
az 5 computations (solid lines) and experimental
o J X .‘; data for the limits of variation of ¢ and
x4 of the ratio b/a shown in Sect, 4 (I—a =
y3 0.5 0.7 27 2742 —a=4kid—a=82%4—a=

22.2). We found that within the stated

limits of variation in the values of & and
b/a . the agreement between the theoret-

ical and experimental results was satisfactory.

Fig. 4
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